Severe Storm Cell Classification Using Support Vector Machines and Radial Basis Function Approaches

نویسندگان

  • L. Ramirez
  • W. Pedrycz
چکیده

Meteorological volumetric data are used to detect thunderstorms that are the cause of most of the summer severe weathers. There are systems that may convert the volumetric data into a set of derived products. Based on these derived features, this work compares three classifiers to determine which approach will best classify a storm cell data set coming from Environment Canada. The criterion for comparison is the accuracy in the classification over a testing set. The three approaches compared are the support vector machine (SVM) classifier, with radial basis function (RBF) kernel; the classic RBF classifier, with the centres found using the orthogonal least squares approach; and the hybrid RBF, with the centres corresponding to the support vectors found using the SVM approach. The results show that the SVM approach is the best of these approaches, in terms of accuracy, for the storm cell classification.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Face Recognition using Eigenfaces , PCA and Supprot Vector Machines

This paper is based on a combination of the principal component analysis (PCA), eigenface and support vector machines. Using N-fold method and with respect to the value of N, any person’s face images are divided into two sections. As a result, vectors of training features and test features are obtain ed. Classification precision and accuracy was examined with three different types of kernel and...

متن کامل

Remote Sensing and Land Use Extraction for Kernel Functions Analysis by Support Vector Machines with ASTER Multispectral Imagery

Land use is being considered as an element in determining land change studies, environmental planning and natural resource applications. The Earth’s surface Study by remote sensing has many benefits such as, continuous acquisition of data, broad regional coverage, cost effective data, map accurate data, and large archives of historical data. To study land use / cover, remote sensing as an effic...

متن کامل

Separating Well Log Data to Train Support Vector Machines for Lithology Prediction in a Heterogeneous Carbonate Reservoir

The prediction of lithology is necessary in all areas of petroleum engineering. This means that to design a project in any branch of petroleum engineering, the lithology must be well known. Support vector machines (SVM’s) use an analytical approach to classification based on statistical learning theory, the principles of structural risk minimization, and empirical risk minimization. In this res...

متن کامل

Signal Detection Using Support Vector Machines in the Presence of Ultrasonic Speckle

Support Vector Machines are a general algorithm based on guaranteed risk bounds of statistical learning theory. They have found numerous applications, such as in classification of brain PET images, optical character recognition, object detection, face verification, text categorization and so on. In this paper we propose the use of support vector machines to segment lesions in ultrasound images ...

متن کامل

Segmentation of ultrasonic images using Support Vector Machines

Support Vector Machines are a general algorithm based on guaranteed risk bounds of statistical learning theory. They have found numerous applications, such as in classification of brain PET images, optical character recognition, object detection, face verification, text categorization and so on. In this paper we propose the use of support vector machines to segment lesions in ultrasound images ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001